
ORIGINAL PAPER

Akitomo Tachibana

A new visualization scheme of chemical energy density and bonds
in molecules

Received: 17 September 2004 / Accepted: 19 January 2005 / Published online: 12 May 2005
� Springer-Verlag 2005

Abstract Covalent bond describes electron pairing in
between a pair of atoms and molecules. The space is
partitioned in mutually disjoint regions by using a new
concept of the electronic drop region RD, atmosphere
region RA, and the interface S (Tachibana in J Chem
Phys 115:3497–3518, 2001). The covalent bond forma-
tion is then characterized by a new concept of the spindle
structure. The spindle structure is a geometrical object of
a region where principal electronic stress is positive along
a line of principal axis of the electronic stress that con-
nects a pair of the RDs of atoms and molecules. A new
energy density partitioning scheme is obtained using the
Rigged quantum electrodynamics (QED). The spindle
structure of the stress tensor of chemical bond has been
disclosed in the course of the covalent bond formation.
The chemical energy density visualization scheme is ap-
plied to demonstrate the spindle structures of chemical
bonds in H2, C2H6, C2H4 and C2H2 systems.

Keywords Visualization Æ Energy density Æ Electronic
stress Æ Spindle structure Æ Rigged QED

Introduction

Conventional quantum electrodynamics (QED) theory
assumes clamped-nuclei Hamiltonian, where the atomic
nuclei are clamped in space and are treated as external
static source of force for electrons [1]. But in chemical
reaction systems, the rearrangement of atomic configu-
ration is of primary interest, and hence the dynamical
treatments of atomic nuclei often play an important role.

In the Rigged QED theory [2, 3], we have elaborated
first the incorporation of the kinetic energy density of

atomic nuclei into the general framework of QED and
obtained the general theory of the field energy density in
chemical reaction systems. The field of the atomic
nucleus is treated as an effective Schrödinger field. This
is an approximate treatment since the atomic nucleus is
treated as a composite united particle, not composed at
elementary particles such as quarks.

The Rigged QED theory is the theoretical back-
ground for the electronic kinetic energy density and
tension density [4, 5] applied to the study of chemical
reaction coordinates of various chemical reaction sys-
tems [6–16]. It is also used to study the dynamic charge
concept [17] of atomic nucleus for non-adiabatic pro-
cesses under electron flow [18, 19], typical of electromi-
gration processes [20–34]. Latest interest in this series of
theoretical study of energy densities is the spindle
structure of the stress tensor of the chemical bond [3].
Stress tensors have also been studied in quantum
mechanics [35] and QED [36].

In this article, we follow the field theoretical study of
chemical interaction in terms of the Rigged QED.
Combining the stress tensor and the spindle structure
reveals new concept of tensorial chemical energy density
that includes the electronic spin angular momentum in
the underling physics.

All the calculations are performed at the Hartree–
Fock level of theory using 6-31G(d,p) basis set, using
our own program package [37] and Gaussian 03 [38].

Energy density

General framework of the energy density of the field
theory is shown in Fig. 1.

The details of the theory will be presented as follows.

General settings

The electric field density operator ~̂Eð~rÞ and the magnetic
field density operator ~̂Bð~rÞ are derived from the
electromagnetic vector potential operator Âlð~rÞ and are
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the elements of the electromagnetic field tensor density
operator F̂lcð~rÞ using Coulomb gauge as follows:

F̂lvð~rÞ ¼ @lÂvð~rÞ � @vÂuð~rÞ

¼

0 Êxð~rÞ Êyð~rÞ Êzð~rÞ
�Êxð~rÞ 0 �B̂zð~rÞ B̂yð~rÞ
�Êyð~rÞ B̂zð~rÞ 0 �B̂xð~rÞ
�Êzð~rÞ �B̂yð~rÞ B̂xð~rÞ 0

0
BBBB@

1
CCCCA
;

@kÂkð~rÞ ¼ 0:

ð1Þ

We use Dirac bracket for the constrained field quanti-
zation and get the canonical quantization rule:

Âið~rÞÂjð~sÞ � Âjð~sÞÂið~rÞ ¼ 0; ð2Þ

Êið~rÞÊjð~sÞ � Êjð~sÞÊið~rÞ ¼ 0; ð3Þ

1

4pc
Âið~rÞÊjð~sÞ� Êjð~sÞÂið~rÞ
� �

¼ i�hdi
jd

3ð~r�~sÞ

þ i�h
@

@sj

@

@ri
� 1

4p
� 1

~r�~sj j

� �
:

ð4Þ

The QED Hamiltonian density operator ĤQEDð~rÞ is
composed of the Hamiltonian density operator of the
electromagnetic field ĤEMð~rÞ and the Dirac electronic
Hamiltonian density operator ĤDiracð~rÞ interacting with
the electromagnetic field as follows:

ĤQEDð~rÞ ¼ ĤEMð~rÞ þ ĤDiracð~rÞ; ð5Þ

ĤEMð~rÞ ¼ Ĥcð~rÞ � Â0ð~rÞq̂eð~rÞ; ð6Þ

ĤDiracð~rÞ ¼ M̂eð~rÞ þ Â0ð~rÞq̂eð~rÞ; ð7Þ

where Ĥcð~rÞ is the electromagnetic field energy density
operator and M̂eð~rÞ is the electronic mass density oper-
ator:

Ĥcð~rÞ ¼
1

8p
~̂E2ð~rÞ þ ~̂B2ð~rÞ
� �

; ð8Þ

M̂eð~rÞ ¼ c �̂wð~rÞ �i�hckD̂ekð~rÞ þ mec
� �

ŵð~rÞ; ð9Þ

with

D̂elð~rÞ ¼ @l þ i
Zee
�hc

Âlð~rÞ; Ze ¼ �1; ð10Þ

where ŵð~rÞ and �̂wð~rÞ ¼ ŵyð~rÞc0 is the field operator of
electron and its Dirac conjugate, respectively, c l being
the Dirac spinor matrices, and where the cls me and Ze

denote the mass and charge of electron, respectively.
The electronic mass density operator M̂eð~rÞ may be

written as the energy density operator of electron Ĥeð~rÞ
as follows:

M̂eð~rÞ ¼ Ĥeð~rÞ: ð11Þ

The canonical quantization rule of the field operators of
electron is

ŵðxÞŵðx0Þ þ ŵðx0ÞŵðxÞ ¼ 0; ð12Þ

ŵyðxÞŵyðx0Þ þ ŵyðx0ÞŵyðxÞ ¼ 0; ð13Þ

ŵðxÞŵyðx0Þ þ ŵyðx0ÞŵðxÞ ¼ dðx� x0Þ; ð14Þ

where, for the sake of simplicity of presentation,
Cartesian and spin variables altogether are represented
by x. Moreover, the renormalization has been per-
formed in a standard manner as summarized in Fig. 2.

Thus, the ĤQEDð~rÞ reduces from Eq. 5 to

ĤQEDð~rÞ ¼ ĤEMð~rÞ þ ĤDiracð~rÞ
¼ Ĥcð~rÞ þ Ĥeð~rÞ:

ð15Þ

We now add the energy density operator Ĥatomð~rÞ of
atomic nuclei interacting through the electromagnetic
field and the electron field, leading to the Rigged QED
Hamiltonian density operator denoted as Ĥrigged QEDð~rÞ :

Ĥrigged QEDð~rÞ ¼ ĤQEDð~rÞ þ Ĥatomð~rÞ: ð16Þ

Using canonical quantization rule for the Rigged QED
theory, the Ĥatomð~rÞ is proved to be purely the kinetic
energy density operator as follows:

Fig. 1 Field theory of the energy density

Fig. 2 Renormalization of QED
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Ĥatomð~rÞ ¼
X

a

T̂að~rÞ; ð17Þ

where

T̂að~rÞ¼�
�h2

2ma
�1
2

v̂ya ð~rÞD̂2
akð~rÞv̂að~rÞþ D̂y2ak ð~rÞv̂ya ð~rÞ � v̂að~rÞ

� �
;

ð18Þ

with

D̂alð~rÞ ¼ @l þ i
Zae
�hc

Âlð~rÞ; ð19Þ

where the ma and Za denotes the mass and charge of
atomic nucleus a, respectively. The canonical quantiza-
tion rule of the Schrödinger field is anticommutation
relationship for Fermions (+) and commutation rela-
tionship for Bosons (�):

v̂aðxÞv̂aðx0Þ � v̂aðx0Þv̂aðxÞ ¼ 0; ð20Þ

v̂ya ðxÞv̂ya ðx0Þ � v̂ya ðx0Þv̂ya ðxÞ ¼ 0; ð21Þ

v̂aðxÞv̂ya ðx0Þ � v̂ya ðx0Þv̂aðxÞ ¼ dðx� x0Þ: ð22Þ

Thus, the Ĥrigged QEDð~rÞ reduces from Eq. 16 to

Ĥrigged QEDð~rÞ ¼ ĤQEDð~rÞ þ Ĥatomð~rÞ
¼ ĤQEDð~rÞ þ

X
a

T̂að~rÞ: ð23Þ

It should be noted that the Rigged QED theory is gauge
invariant and preserves translational and rotational
symmetry but Poincare symmetry, because at the pres-
ence of the Schrödinger fields v̂a and v̂ya ; violates Lorentz
invariance of the Lagrangian density, as schematically
summarized in Fig. 3.

If we neglect the Schrödinger fields, then we recover
the conventional QED theory with the Poincare sym-
metry as well as the gauge invariance.

Equations of motion of fields

In this subsection, the equations of motion of fields will
be presented.

First, the Maxwell’s equations of motion are found
for the electromagnetic fields. Using Eq. 1 which is
rewritten as

~̂Eð~rÞ ¼ �gradÂ0ð~rÞ �
1

c
@~̂Að~rÞ
@t

; div~̂Að~rÞ ¼ 0; ð24Þ

~̂Bð~rÞ ¼ rot~̂Að~rÞ; ð25Þ

we have

rot~̂Eð~rÞ þ 1

c
@~̂Bð~rÞ
@t
¼ 0; ð26Þ

div~̂Bð~rÞ ¼ 0; ð27Þ

div~̂Eð~rÞ ¼ 4pq̂ð~rÞ; ð28Þ

rot~̂Bð~rÞ � 1

c
@~̂Eð~rÞ
@t
¼ 4p

c
~̂jð~rÞ; ð29Þ

where is the charge density operator and q̂ð~rÞ~̂jð~rÞ is the
charge current density operator. The q̂ð~rÞ is decomposed
into

q̂ð~rÞ ¼ q̂eð~rÞ þ
X

a

q̂að~rÞ ¼
X

a

q̂að~rÞ; ð30Þ

q̂að~rÞ ¼ ZaeN̂að~rÞ; ð31Þ

where q̂eð~rÞ is the electronic charge density operator and
q̂að~rÞ is the charge density operator of atomic nucleus a,
and where N̂eð~rÞ and N̂að~rÞ is the position probability
density operator of electron and atomic nucleus a,
respectively:

N̂eð~rÞ ¼ �̂wð~rÞc0ŵð~rÞ; ð32Þ

N̂að~rÞ ¼ v̂ya ð~rÞv̂að~rÞ: ð33Þ

The ~̂jð~rÞ is decomposed into

~̂jð~rÞ ¼ ~̂jeð~rÞ þ
X

a

~̂jað~rÞ ¼
X

a

~̂jað~rÞ; ð34Þ

~̂jað~rÞ ¼ Zae~̂vað~rÞ; ð35Þ

where ~̂jeð~rÞ is the electronic charge current density
operator and~̂jað~rÞ the charge current density operator of
atomic nucleus a, and ~̂vað~rÞ denotes the velocity density
operator:

~̂veð~rÞ ¼ c �̂wð~rÞ~cŵð~rÞ; ð36Þ

~̂vað~rÞ¼
1

2ma
�i�hv̂ya ð~rÞD̂akð~rÞv̂að~rÞþi�hD̂yakð~rÞv̂ya ð~rÞ�v̂að~rÞ
� �

:

ð37Þ

The ~̂vað~rÞ may also be written as the position probability
density operator ~̂Sað~rÞ as follows:Fig. 3 Rigged QED Hamiltonian density operator
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~̂vað~rÞ ¼ ~̂Sað~rÞ: ð38Þ

Second, the Dirac spinor field satisfies

i�hclD̂elð~rÞŵð~rÞ ¼ mecŵð~rÞ; ð39Þ

�i�hD̂yelð~rÞ �̂wð~rÞcl ¼ mec �̂wð~rÞ: ð40Þ

Third, the Schrödinger field satisfies

i�h
@

@t
v̂að~rÞ ¼ �

�h2

2ma
D̂2

akð~rÞv̂að~rÞ þ ZaeÂ0ð~rÞv̂að~rÞ; ð41Þ

�i�h
@

@t
v̂ya ð~rÞ ¼ �

�h2

2ma
D̂�2akð~rÞv̂ya ð~rÞ þ ZaeÂ0ð~rÞv̂ya ð~rÞ: ð42Þ

Charge and position density equations of motion
of particles

The charge density conservation laws are obtained as the
continuity equations

@

@t
q̂eð~rÞ þ div~̂jeð~rÞ ¼ 0; ð43Þ

for electron, and

@

@t
q̂að~rÞ þ div~̂jað~rÞ ¼ 0; ð44Þ

for atomic nucleus a. Then, we obtain the continuity
equation of the charged particles as a whole

@

@t
q̂ð~rÞ þ div~̂jð~rÞ ¼ 0: ð45Þ

Next, the position density operator of electron and
the position density operator of atomic nucleus a are
defined as

~̂rað~rÞ ¼~rN̂að~rÞ: ð46Þ

The equations of motion of the position densities are
then found to be

@

@t
~̂rað~rÞ ¼ ~̂vað~rÞ � ~̂wað~rÞ; ð47Þ

where ~̂vað~rÞ is the velocity density operator, and ~̂wað~rÞ de-
notes the field velocity vector density operator defined as

~̂wað~rÞ ¼ @‘ ~r � v̂‘að~rÞ
� �

: ð48Þ

If we introduce the field velocity tensor density operator
^w$að~rÞ as

ŵk‘
a ð~rÞ ¼ xk � v̂‘að~rÞ; ð49Þ

then Eq. 49 is rewritten as

@

@t
~̂rað~rÞ ¼ ~̂vað~rÞ � div

^w$að~rÞ: ð50Þ

Equations of motion of momentums

First, the momentum of the electromagnetic field is
represented as the Poynting vector. The Poynting vector
density operator ~̂Gð~rÞ defined as

~̂Gð~rÞ ¼ 1

4pc
~̂Eð~rÞ � ~̂Bð~rÞ ð51Þ

satisfies the equation of motion

@

@t
1

2
~̂Gð~rÞþ~̂Gyð~rÞ
� �

¼�1
2
~̂Lð~rÞþ~̂Lyð~rÞ
� �

�div^r$ð~rÞ: ð52Þ

In this expression,
^r$ð~rÞ is the Maxwell’s stress tensor

density operator and ~̂Lð~rÞ is the Lorentz force density
operator as follows:

^r$ð~rÞ ¼ ^r$Eð~rÞ þ ^r$M ð~rÞ; ð53Þ

r̂ij
Eð~rÞ¼

1

8p
~̂E
2ð~rÞdij� Êið~rÞÊjð~rÞþ Êjð~rÞÊið~rÞ

� �h i
;

r̂ij
Mð~rÞ¼

1

8p
~̂B
2ð~rÞdij� B̂ið~rÞB̂jð~rÞþ B̂jð~rÞB̂ið~rÞ

� �h i
;

ð54Þ

and

~̂Lð~rÞ ¼ ~̂Leð~rÞ þ
X

a

~̂Lað~rÞ; ð55Þ

~̂Leð~rÞ ¼ ~̂Eð~rÞq̂eð~rÞ þ
1

c
~̂jeð~rÞ � ~̂Bð~rÞ; ð56Þ

~̂Lað~rÞ ¼ ~̂Eð~rÞq̂að~rÞ þ
1

c
~̂jað~rÞ � ~̂Bð~rÞ; ð57Þ

where ~̂Leð~rÞ is the electronic Lorentz force density
operator and ~̂Lað~rÞ is the Lorentz force density operator
of atomic nucleus a.

It should be noted that
^r$ð~rÞ is symmetric:

r̂ijð~rÞ ¼ r̂jið~rÞ: ð58Þ

Likewise, the angular momentum density operator ~̂uð~rÞ
of the electromagnetic field defined as

~̂uð~rÞ ¼~r � ~̂Gð~rÞ; ð59Þ

satisfies the equation of motion

@

@t
1

2
~̂uð~rÞ þ ~̂uyð~rÞ
� �

¼ �~r � 1

2
~̂Lð~rÞ þ ~̂Lyð~rÞ
� �

� div ~r � ^r$ð~rÞ
� �

: ð60Þ

Second, the electronic kinetic momentum density oper-
ator ~̂Peð~rÞ defined as

P̂k
eð~rÞ ¼

1

2
�i�hŵyð~rÞD̂ekð~rÞŵð~rÞ þ i�hD̂yekð~rÞŵ

yð~rÞ � ŵð~rÞ
� �

ð61Þ
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satisfies the equation of motion

@

@t
~̂Peð~rÞ ¼ ~̂Leð~rÞ þ ~̂sP

e ð~rÞ: ð62Þ

Aside from the electronic Lorentz force density operator
~̂Leð~rÞ; the ~̂sP

e ð~rÞ denotes the electronic tension density
operator given as the divergence of the electronic stress

tensor density operator
^s$

P
e ð~rÞ as follows:

~̂sP
e ð~rÞ ¼ div

^s$
P
e ð~rÞ; ð63Þ

~̂sPk
e ð~rÞ ¼ @lŝ

Pkl
e ð~rÞ; ð64Þ

where

ŝPk
e ð~rÞ

¼ i�hc
2

D̂
y
elð~rÞ �̂wð~rÞc‘ � D̂ekð~rÞŵð~rÞþ �̂wð~rÞc‘D̂ekð~rÞD̂elð~rÞŵð~rÞ

	

�D̂
y
ekð~rÞD̂

y
elð~rÞ �̂wð~rÞc‘ � ŵð~rÞ� D̂

y
ekð~rÞ �̂wð~rÞc‘ � D̂elð~rÞŵð~rÞ




� 1

c
~̂jeð~rÞ�~Bð~rÞ
� �k

ð65Þ

and

ŝPkl
e ð~rÞ ¼

i�hc
2

�̂wð~rÞc‘D̂ekð~rÞŵð~rÞ � D̂yekð~rÞ �̂wð~rÞc‘ � ŵð~rÞ
h i

:

ð66Þ

It should be noted that
^
s$

P
e ð~rÞ is Hermitean:

^s$
Py
e ð~rÞ ¼

^s$
P
e ð~rÞ: ð67Þ

Third, the electronic spin angular momentum density
operator ~̂reð~rÞ is defined as

~̂reð~rÞ ¼ ŵyð~rÞ~rŵð~rÞ; ð68Þ

where, ~r denotes the Pauli spin matrix:

r1 ¼ rx ¼
0 1

1 0

� �
; r2 ¼ ry ¼

0 �i

i 0

� �
;

r3 ¼ rz ¼
1 0

0 �1

� �
:

ð69Þ

The electronic spin angular momentum density satisfies
the equation of motion

@

@t
1

2
�hr̂k

eð~rÞ
� �

¼ �e‘nk ŝ
Pln
e ð~rÞ � f̂eð~rÞ; ð70Þ

where

f̂eð~rÞ ¼ c@l
�̂wð~rÞcl 1

2
�hrlŵð~rÞ

� �
: ð71Þ

Fourth, the electronic orbital angular momentum den-
sity operator ~̂‘eð~rÞ is defined as

~̂‘eð~rÞ ¼~r � ~̂Peð~rÞ; ð72Þ

which satisfies the equation of motion

@

@t
~̂‘eð~rÞ þ

1

2
�h~̂reð~rÞ

� �
¼~r � ~̂Leð~rÞ þ div ~r � ^s$

P
e ð~rÞ

� �

� f̂eð~rÞ:
ð73Þ

Fifth, the kinetic momentum density operator

ma~̂Sað~rÞ ¼ ~̂jað~rÞ of atomic nucleus a satisfies the equa-

tion of motion

@

@t
ma
~̂Sað~rÞ

� �
¼ @

@t
~̂jað~rÞ ¼ ~̂Lað~rÞ þ ~̂sS

að~rÞ ð74Þ

Aside from the Lorentz force density operator ~̂Lað~rÞ; the
~̂sS

að~rÞ denotes the tension density operator given as the
divergence of the stress tensor density operator

^s$
S
að~rÞ as

follows:

~̂sS
að~rÞ ¼ div

^s$
S
að~rÞ; ð75Þ

ŝSk
a ð~rÞ ¼ @lŝ

Skl
a ð~rÞ; ð76Þ

where

ŝSk
a ð~rÞ ¼

�h2

4ma
v̂ya ð~rÞD̂akð~rÞD̂2

alð~rÞv̂að~rÞ
h

þD̂yakð~rÞD̂
y2
al ð~rÞv̂ya ð~rÞ � v̂að~rÞ

�D̂yakð~rÞv̂ya ð~rÞ � D̂2
alð~rÞv̂að~rÞ � D̂y2al ð~rÞv̂ya ð~rÞ

�D̂akð~rÞv̂að~rÞ
�
� 1

c
~̂jað~rÞ � ~̂Bð~rÞ
� �k

; ð77Þ

ŝSkl
a ð~rÞ ¼

�h2

4ma
v̂ya ð~rÞD̂akð~rÞD̂alð~rÞv̂að~rÞ
h

þD̂yakð~rÞD̂
y
alð~rÞv̂ya ð~rÞ � v̂að~rÞ:

�D̂yakð~rÞv̂ya ð~rÞ � D̂alð~rÞv̂að~rÞ

�D̂yalð~rÞv̂ya ð~rÞ � D̂akð~rÞv̂að~rÞ
i
:

ð78Þ

It should be noted that the stress tensor density operator
^s$

S
að~rÞ is Hermitean and symmetric:

^s$
Sy
a ð~rÞ ¼

^s$
S
að~rÞ; ð79Þ

ŝSkl
a ð~rÞ ¼ ŝSlk

a ð~rÞ: ð80Þ

The electronic orbital angular momentum density

operator ~̂‘að~rÞ is defined as

~̂‘að~rÞ ¼~r �~̂jað~rÞ; ð81Þ

and satisfies the equation of motion:

@

@t
~̂‘að~rÞ ¼~r � ~̂Lað~rÞ þ div ~r � ^s$

S
að~rÞ

� �
: ð82Þ
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Combining these, we obtain

@

@t
~̂Pð~rÞ ¼ ~̂Lð~rÞ þ ~̂sð~rÞ ¼ ~̂Lð~rÞ þ div

^s$ð~rÞ; ð83Þ

where

~̂Pð~rÞ ¼ ~̂Peð~rÞ þ
X

a

~̂jað~rÞ; ð84Þ

~̂sð~rÞ ¼ ~̂sP
e ð~rÞ þ

X
a

~̂sS
að~rÞ; ð85Þ

^s$ð~rÞ ¼ ^s$
P
e ð~rÞ þ

X
a

^s$
S
að~rÞ: ð86Þ

Likewise, we obtain

@

@t
1

2
~̂Gð~rÞ þ ~̂Gyð~rÞ
� �

þ ~̂Pð~rÞ
	 


¼ �div ^r$ð~rÞ � ^s$ð~rÞ
� �

;

ð87Þ

which is the momentum conservation law of the Rigged
QED system.

For the angular momentum, we have

@

@t
~̂‘eð~rÞ þ

1

2
�h~̂reð~rÞ þ

X
a

~̂‘að~rÞ
 !

¼~r � ~̂Lð~rÞ þ div ~r � ^s$ð~rÞ
� �

� f̂eð~rÞ; ð88Þ

and if the ~̂uð~rÞ is added to, we obtain

@

@t
~̂uð~rÞ þ ~̂‘eð~rÞ þ

1

2
�h~̂reð~rÞ þ

X
a

~̂‘að~rÞ
 !

¼ �div ~r � ^r$ð~rÞ � ^s$ð~rÞ
� �h i

� f̂eð~rÞ; ð89Þ

which is the angular momentum conservation law of the
Rigged QED system.

Energy densities

The energy flow is found as follows:

@

@t
Ĥcð~rÞ ¼ �c2div

1

2
~̂Gð~rÞ þ ~̂Gyð~rÞ
� �

� 1

2
~̂Eð~rÞ �~̂jð~rÞ þ~̂jð~rÞ � ~̂Eð~rÞ
� �

; ð90Þ

@

@t
Ĥeð~rÞ ¼ �c2div~̂Peð~rÞ þ

1

2
~̂Eð~rÞ �~̂jeð~rÞ þ~̂jeð~rÞ � ~̂Eð~rÞ
� �

;

ð91Þ

@

@t
Ĥatomð~rÞ¼�div

X
a

~̂sað~rÞ

þ1
2

~̂Eð~rÞ�
X

a

~̂jað~rÞþ
X

a

~̂jað~rÞ�~̂Eð~rÞ
 !

; ð92Þ

with

ŝk
að~rÞ ¼

1

2i�h
�h2

2ma

� �
D̂yakð~rÞD̂

y2
al ð~rÞv̂ya ð~rÞ � v̂að~rÞ

h

�D̂y2al ð~rÞv̂ya ð~rÞ � D̂akð~rÞv̂að~rÞ:

þD̂yakð~rÞv̂ya ð~rÞ � D̂2
alð~rÞv̂að~rÞ

�v̂ya ð~rÞD̂akð~rÞD̂2
alð~rÞv̂að~rÞ

i
;

ð93Þ

leading to

@

@t
Ĥrigged QEDð~rÞ

¼ �div c2~̂Gð~rÞ þ c2~̂Peð~rÞ þ
X

a

~̂sað~rÞ
 !

; ð94Þ

which is the energy conservation law of the Rigged QED
system.

The virial theorem has been found to be:

Erigged QED ¼
Z

d3~r Ĥrigged QED ~rð Þ
� �

¼
Z

d3~r mec2 �̂w ~rð Þŵ ~rð Þ �
X

a

T̂a ~rð Þ
* +

; ð95Þ

which in the non-relativistic limit becomes

Enon� relativistic rigged QED ¼ �
Z

d3~r
X

a

T̂a ~rð Þ
* +

: ð96Þ

It should be noted that the stress tensor density has
the dimension of the energy density. Indeed, the trace of
the stress tensor density becomes

ŝP
e

k
kð~rÞ¼

c
2
�i�h �̂wð~rÞckD̂ekð~rÞŵð~rÞþ i�hD̂yekð~rÞ �̂wð~rÞck � ŵð~rÞ
� �

¼1
2

M̂eð~rÞþM̂ye ð~rÞ
� �

�mec2 �̂wð~rÞŵð~rÞ; ð97Þ

^s$
S
a

k
kð~rÞ ¼

�h2

4ma
�v̂ya ð~rÞD̂2

a‘ð~rÞv̂að~rÞ � D̂y2a‘ ð~rÞv̂ya ð~rÞ � v̂að~rÞ
h

þD̂ya‘ð~rÞv̂ya ð~rÞ � D̂a‘ð~rÞv̂að~rÞ

þD̂ya‘ð~rÞv̂ya ð~rÞ � D̂a‘ð~rÞv̂að~rÞ
i
: ð98Þ

This is equivalent to two times the kinetic energy den-
sity; in the non-relativistic limit, the integral of the trace
of the stress tensor density gives two times that of the
kinetic energy density as follows
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Z
d3~r ŝP

e
k
kð~rÞ þ

X
a

^s$
S
a

k
kð~rÞ

* +
!nonrelativistic limit

Z
d3~r

X
a

^s$
S
a

k
kð~rÞ

* +
¼ 2

Z
d3~r

X
a

T̂a ~rð Þ
* +

:

ð99Þ

Hence, the stress tensor density gives a local picture of
two times the kinetic energy density.

The eigenvalue is the principal stress and the eigen-
vector is the principal axis as summarized in Fig. 4.

The eigenvalue of the stress tensor density gives a
measure of the kinetic energy. If the local principal stress
is positive, it is called the tensile stress, while if it is
negative, compressive. The discrimination is schemati-
cally shown in Fig. 5.

Since the metric tensor gij has negative eigenvalues
(�1, �1, �1), we should note that the compressive stress
gives a positive contribution to the kinetic energy den-
sity, while the tensile stress provides a negative contri-
bution. This relationship provides the new picture of the
local chemical interaction energy density. The atomic
electron density exhibits positive kinetic energy density,
leading to the formation of the electronic drop region
RD [4], leading to the compressive stress [3]. This ten-
dency should of course be intact in between ionic species
interactions. The situation would change dramatically
for covalent bond formation, where a pair of electrons
should be bound tightly and thereby creating tensile
stress. Many systems exhibit such generic features,
which are called spindle structure [3].

Stationary condition

Stationary state is of primary importance since the local
force can vanish, when the equation of motions for the
stationary state is equivalent to the local equilibrium
condition and where the tension density exactly cancels
the Lorentz force density at every point of space [2–5].
The tension is given by the divergence of the stress tensor.
Since the stress tensor has the dimensions of the energy

density, a completely new realization of the tensorial
chemical interaction energy density is then realized.

Application

Let us demonstrate the usefulness of our theory by
demonstrating the spindle structures. The spindle
structure is a geometrical object of a region where
principal electronic stress is positive along a line of
principal axis of the electronic stress that connects a pair
of the RDs of atoms and molecules [3].

H2 molecule

A schematic of the spindle structure of the H–H r bond
is shown in Fig. 6.

The numerical data are shown on the cross section of
the molecule in the plane containing the H–H r bond
axis in Fig. 7.

As shown in Fig. 7, the spindle structure of the r
bond has the sheath structure surrounding the spindle.
The sheath of the spindle has marginally parallel prin-
cipal axes as the adjacent spindle but the eigenvalue has
negative sign instead.

Single, double and triple bonds in C2H6, C2H4 and C2H2

The spindle structure in C2H6 is shown on the cross
section of the molecule in the plane containing the C–C
r bond axis and two C–H r bonds in Fig. 8.

Fig. 4 Diagonalized form of the stress tensor

Fig. 5 Tensile (a) and compressive (b) stresses

Fig. 6 Spindle structure
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As shown in Fig. 8, the spindle structures for C–H
and C–C r bonds are demonstrated. Note also that the
spindle structures in between inter-shell structures within
the C atom. Marginal stability around atoms is repre-
sented by compressive principal stresses. Only the bonds
of a pair of electrons are singled out as the spindle
structure.

The spindle structure in C2H4 is shown on the cross
section of the molecular plane containing four C–H r
bonds in Fig. 9.

As shown in Fig. 9, the spindle structures for the C–C
and C–H r bonds are clearly demonstrated. Marginal
stability around atoms is represented by compressive
principal stresses. The spindle structure for the C–H r
bond remains the same as in the C2H6 case. However,
the spindle structure for the C–C r bond shrinks both in
region and magnitude as compared with that in the
C2H6 case. This is because the second C–C p bond that
spreads perpendicular to the molecular plane makes the

C–C distance shorter, and therefore the C–C r bond
approaches the united atom limit where the tensile stress
region is immersed under the atomic compressive one.

The spindle structure for the C–C p bond in C2H4 is
shown on the cross section of the plane that is both
perpendicular to the molecular plane and containing the
C–C axis in Fig. 10.

As shown in Fig. 10, the spindle structure for C–C p
bond is clearly demonstrated. The dumbbell-type spindle
structure for the C–C p bond spreads in a wider region
than that of the C–C r bond and shows the magnitude
of the tensile eigenvalue has two maxima in the sym-
metric position out of the C–C axis. The sheath structure
surrounding the C–C p bond spindle inevitably spreads
extensively and represents the region of rather loosely
bound electrons. Again, the spindle structure for the C–
C r bond shrinks both in space and magnitude com-
pared to that in the C2H6 case, where the tensile stress
region for the C–C r bond is immersed under the atomic
compressive one.

The spindle structure in C2H2 is shown in the plane
containing the C–C r bond axis in Fig. 11.

As shown in Fig. 11, the spindle structures for the
two C–H r bonds remain intact as in the C2H6 case.
However, it should be noted that the spindle structure
for the C–C r and p bonds disappear but the dumbbell-
type sheath structure corresponding to the C–C p bond
remains as in the C2H4 case instead. Apparently, the
tensile stress region for the C–C r and p bonds is
immersed completely under the atomic compressive one.

Conclusion

The field theory of the energy density has been presented
in terms of the Rigged QED theory. Maxwell’s equa-
tions are fundamental to our approach in addition to
those of Schrödinger and Dirac.

The vibronic interaction that goes beyond the adia-
batic approximation has been incorporated in addition
to the electronic spin-dependent interaction.
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Fig. 9 Spindle structure in C2H4 on the molecular plane
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Covalent bond describe electron pairing in between a
pair of atoms and molecules. In this paper, the space is
partitioned in mutually disjoint regions by using a new
concept of the electronic drop region RD, atmosphere
region RA, and the interface S [2–5]. The covalent bond
formation is then characterized by a new concept of the
spindle structure. The spindle structure is a geometrical
object of a region where principal electronic stress is
positive along a line of principal axis of the electronic
stress that connects a pair of the RD’s of atoms and
molecules. A new energy density partitioning scheme is
obtained using the Rigged QED.

Local equilibrium condition equivalent to the
Schrödinger equation of the stationary state is found as
the balance of (1) the Lorentz force exerted on the
particle and (2) the tension of the field at every point in
space. Tensorial chemical interaction energy density is
revealed as the integral of the tension, and the Lorentz
force in the case of the stationary state. Spindle structure
connects a pair of the electronic RDs of atoms and
molecules, and proves the intrinsic tensorial chemical
interaction energy density. Rigged QED theory lacks the
Poincare symmetry but encompasses the nuclear

dynamics, for example, the nuclear currents constitute
the elements of the Maxwell’s equations, as well as the
nuclear charges does, and the virial theorem allows the
kinetic energy density partitioning. Applications have
shown the usefulness of our theory for classifying vari-
ous modes of chemical interaction energies.

The nuclear spin should have been treated using full
Poincare symmetry, which should be found by using the
gauge fields of QCD(Quantum chromodynam-
ics)reduced from GUT(Grand unified theory)as follows:

SUð3Þc � SUð2Þw � Uð1Þy ! SUð3Þc � Uð1ÞQED;

where the Higgs field breaks the electroweak gauge
group SU(2)w · U(1)y down to U(1)QED, but the color
and charge symmetries remain intact. This topic will be
treated elsewhere.
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Appendix

In the Rigged QED theory, the interaction of a system
and its environment is tractable using regional charge
and current densities.

Let a system A be embedded in the environment
medium M. The corresponding gauge potentials [2] are
the regional integrals of the charge and transversal
current densities, defined as follows

Â0Að~rÞ ¼
Z

A

d3~s
q̂ð~sÞ
~r �~sj j; ð100Þ

Â0Mð~rÞ ¼
Z

M

d3~s
q̂ð~sÞ
~r �~sj j; ð101Þ

and

~̂AAð~rÞ ¼
1

c

Z

A

d3~s
~̂jTð~s; uÞ
~r �~sj j ; ð102Þ

~̂AMð~rÞ ¼
1

c

Z

M

d3~s
~̂jTð~s; uÞ
~r �~sj j ; ð103Þ

where the subscript A or M of the integral sign denotes
the regional integrals confined to the region A or M,
respectively.

Since the regions A and M altogether span the whole
space, we have

Â0ð~rÞ ¼ Â0Að~rÞ þ Â0Mð~rÞ; ð104Þ

~̂Að~rÞ ¼ ~̂AAð~rÞ þ ~̂AMð~rÞ þ ~̂Aradiationð~rÞ; ð105Þ

where ~̂Aradiationð~rÞ denotes that portion of the radiation
field.

The electric field ~̂Eð~rÞ is decomposed into the electric
displacement ~̂Dð~rÞ of the medium M and the polariza-

tion ~̂P ð~rÞ of the system A, defined, respectively, as

~̂Dð~rÞ ¼ �gradÂ0Mð~rÞ �
1

c
@

@t
~̂AMð~rÞ; ð106Þ

~̂P ð~rÞ ¼ 1

4p
gradÂ0Að~rÞ þ

1

4pc
@

@t
~̂AAð~rÞ; ð107Þ

so that we have

~̂Eð~rÞ ¼ �gradÂ0ð~rÞ �
1

c
@

@t
~̂Að~rÞ

¼ ~̂Dð~rÞ � 4p~̂P ð~rÞ � 1

c
@

@t
~̂Aradiationð~rÞ: ð108Þ

Likewise, let the magnetic field ~̂Hð~rÞ of the medium M

and the magnetization ~̂Mð~rÞ of the system A be defined,
respectively, as

~̂Hð~rÞ ¼ rot~̂AMð~rÞ; ð109Þ

~̂Mð~rÞ ¼ 1

4p
rot~̂AAð~rÞ; ð110Þ

then we have

~̂Bð~rÞ ¼ rot~̂Að~rÞ ¼ ~̂Hð~rÞ þ 4p ~̂Mð~rÞ þ rot~̂Aradiationð~rÞ:
ð111Þ

The regional charge densities are then represented,
respectively, as

q̂Að~rÞ ¼ �
1

4p
DÂ0Að~rÞ; ð112Þ

q̂Mð~rÞ ¼ �
1

4p
DÂ0Mð~rÞ; ð113Þ

and hence

q̂ð~rÞ ¼ q̂Að~rÞ þ q̂Mð~rÞ: ð114Þ

Likewise, the regional current densities are represented
as

~̂jAð~rÞ ¼
c
4p

1

c
grad

@

@t
Â0Að~rÞ þ�~̂AAð~rÞ

� �

¼ @

@t
~̂P ð~rÞ þ crot ~̂Mð~rÞ; ð115Þ

~̂jMð~rÞ ¼
c
4p

1

c
grad

@

@t
Â0Mð~rÞ þ�~̂AMð~rÞ

� �
; ð116Þ

and hence

~̂jð~rÞ ¼ ~̂jAð~rÞ þ~̂jMð~rÞ ¼
@

@t
~̂Pð~rÞ þ crot ~̂Mð~rÞ þ~̂jMð~rÞ:

ð117Þ

The regional decomposition of the longitudinal and
transversal components of the current densities are
represented as follows

~̂jð~rÞ ¼ ~̂jLð~rÞ þ~̂jTð~rÞ; ð118Þ

with

~̂jLð~rÞ ¼ ~̂jLA
ð~rÞ þ~̂jLM

ð~rÞ; ð119Þ

~̂jTð~rÞ ¼ ~̂jTA
ð~rÞ þ~̂jTM

ð~rÞ; ð120Þ

where

~̂jLA
ð~rÞ ¼ c

4p
� 1

c
grad

@

@t
Â0Að~rÞ; ð121Þ

~̂jLM
ð~rÞ ¼ c

4p
� 1

c
grad

@

@t
ÂMð~rÞ; ð122Þ

~̂jTA
ð~rÞ ¼ c

4p
��~̂AAð~rÞ; ð123Þ

~̂jTM
ð~rÞ ¼ c

4p
��~̂AMð~rÞ: ð124Þ
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Using Eqs. 121, 122, 123 and 124, we have the alterna-
tive forms of Eqs. 16 and 17, respectively, as

~̂jAð~rÞ ¼ ~̂jLA
ð~rÞ þ~̂jTA

ð~rÞ; ð125Þ

~̂jMð~rÞ ¼ ~̂jLM
ð~rÞ þ~̂jTM

ð~rÞ: ð126Þ

The linear response properties of the system A under the
interaction with the environment medium M may for-
mally be represented with obvious notation as follows

~̂Dð~rÞ ¼ 1þ 4p^v
$
eð~rÞ

� �
~̂Eð~rÞ ¼ ^e

$ð~rÞ~̂Eð~rÞ; ð127Þ

~̂Bð~rÞ ¼ 1þ 4p^v
$

mð~rÞ
� �

~̂Hð~rÞ ¼ ^l$ð~rÞ~̂Hð~rÞ; ð128Þ

~̂jð~rÞ ¼
^
G
$
ð~rÞ~̂Eð~rÞ: ð129Þ
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